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Introduction

The rotational motion of a torgque-free rigid body is known
to be stable if the rotation takes place about an axis corres-
ponding to the maximum or minimum moment of inertia, but the
motion is unstable if the rotation takes place about an axis
of intermediate principal moment of inertia (see, for example,
the text by Meirovitchl, Sec. 6.7). In a large number of iq-
vestigations concerned with the attitude stability of spinning
spacecraft, the spacecraft is envisioned as a rotating, torque-
free rigid body. It is assumed that the spacecraft dimensions,
although finite, are small compared with the distance to the
center of force. This mathematical model permits the assumption
that the attitude motion has no effect upon the orbital motion,
thus reducing the complexity of the problem by regarding the
orbital motion as known. But in general spacecraft are not en-
tirely rigid and the question remains as to what extent the
rigid-body idealization can be justified. A number of invest-
igations concerned with the dynamics of satellites containing
elastic parts have indeed been conducted. In the sequel some
of these studies are reviewed as a way of introducing the pre-
sent problem.

In an attempt to explain the tumbling motion of the Explor-

2 and Meirovitch3 have invest-

er I satellite, Thomson and Reiter
igated the effect of energy dissipation resulting from the vi-
bration of certain elastic parts of the satellite. On the

basis of energy considerations, these investigations concluded




that, for spin stabilization, spinning motion must be imparted
to the satellite about the axis of maximum moment of inertia.
Later works by Auelmann4, Pringles, and Likins6 established
the usefulness of the Liapunov direct method for the investi-
gation of the attitude stability of satellites, at least for
the‘case of rigid satellites. Subsequently, Pringle7 used the
Liapunov direct method to investigate the stability of a body
with connected moving parts. The formulation of Reference 7,
howevef, is based entirely on ordinary differential equations
and is suitable for investigating discrete systems but not
distributed ones.

More pertinent to the present subject is the work by
Meirovitch and Nelson8 who investigated the stability of motion
of a satellite containing elastic parts by means of an infini-
tesimal analysis. Reference 8 represents one of the first
attempts to treat rigorously distributed elastic members. The
displacement of the elastic members is represented as a series
of normal modes multiplying time-dependent generalized coord-
inates and the effect of truncating the series on the system
stability is explored. Also related to the present problem
is éhe one of a satellite with elastically connected moving
parts investigated by Nelson and Meirovitch9 via the Liapunov
direct method. In this work the distributed elastic members
are simulated by means of discrete masses. The dynamics of
a spacecraft consisting of two rigid bodies joined by an elas-

tic structure has been investigated by Robe and Kane.lO



Ignoring gravitational terms, an infinitesimal analysis is
carried out for small motions about the simple-spin equilibrium
position. The dynamics of satellites containing elastic parts

11 This lat-

has been further studied by Likins and Wirsching.
ter work considers a discrete system and employs the normal,
modes to represent elastic displacements.

The Liapunov direct method has been widely used to anélyze
the stability of discrete systems. In recent years, however,
work has been done on extending the Liapunov method to distri-
buted-parameter systems. In this regard we single out the

12,13 and by Parksl4 who applied the method to

works by Wang
analyze the stability of partial differential equations associ-
ated with elastic and aeroelastic systems. From Refs. 12-14

it can be concluded that one of the major problems in applying
the Liapunov direct method to continuous systems is that of
constructing a suitable testing function. (Actually the same
statement can be made in connection with discrete systems.)

The motion of spinning bodies containing distributed
elastic members is described by sets of both ordinary and pért—
ial differential equations. We refer to such sets of diffeient—
ial equations as "hybrid". 1In Reference 12 Wang presents a
simple example of a hybrid system. 1In a first attempt to
apply Liapunov's direct method to hybrid systems from the area

15,16 studied the stability

of satellite dynamics, Meirovitch
of a spinning rigid body with elastic appendages. Several

new concepts were introduced in Ref. 15, such as the use of



some of Rayleigh's quotient properties to eliminate the depend-
ence of the testing functional on the spatial derivatives, as
well as the concept of a testing density function. Reference
16 extends the theory to torque-free hybrid systems.

This present study extends the work of Refs. 15 and 16
to the case of hybrid systems in which testing density funct-
ioné cannot be readily defined. The mathematical model con-
sists of a torque-free spinning rigid body with three pairs
of rigidly-attached flexible rods. First the Hamiltonian
equations of motion, with appropriate boundary conditions, are
derived. The stability analysis follows the pattern of Ref.
15, in which it is shown that under certain circumstances the
system Hamiltonian H is a suitable Liapunov functional.
Through the use of certain properties of Rayleigh's quotient,
it is possible to define a new functional «, such that H > x,
and to prove that if « is positive definite in the neighborhood
of the origin, then the trivial solution is asymptotically
stable. In contrast to the method of Ref. 15, in this case
it is not possible to define an appropriate testing density
funétion. Two approaches are presented here to circumvent this
difficulty. The first, modal analysis in conjunction with
series truncation, leads to stability criteria in terms
of infinite series. The second method involves defining new
time-dependent coordinates in terms of certain integrals appear-
ing in the system Hamiltonian. Using these integral coordinates

and Schwarz's inequality for functions it is possible to dis-



cretize the testing functional « and test its sign properties
by using Sylvester's criterion. This method yields closed-
form stability criteria lending themselves to ready physical

interpretation.

General Problem Formulation

Let us consider a body of total mass m moving relative to
an inertial space XYZ, as shown in Figure 1. The entire body
or parts of the body are capable of small elastic deformations
from a reference equilibrium position coinciding with the un-
deformed state of the body. Next we define two sets of body
axes, the set xyz with the origin at point 0 and coinciding
with the principal axes of the body in the undeformed state,
and the set &¢ng which is parallel to xyz but has the origin
at the center of mass c of the deformed body. We note that
Enz is not a principal set of axes. The set xyz serves as a
suitable reference frame for measuring elastic deformations
whereas the set &nz is more convenient for expressing the over-
all motion. The position of a typical point in the undeforméd
body relative to axes xyz is denoted by the vector* r = xi +:yi
+ zk and the elastic displacement of an element of mass dm, orig-
inally coincident with that point, by the vector u=ulx,y,z,t)i

+ v(x,y,z,t)j + wix,y,z,t)k, where i,j,k are unit vectors along

* Vector quantities are denoted by wavy lines under the symbols.




axes Xx,y,z (or axes g,n,z), respectively. The radius vector
. . 1 1
from point 0 to ¢ is given by r = = fm(£+g)dm == fmg dm,

where we note that [ r dm is zero by virtue of the fact that
m
0 is the center of mass of the undeformed body. All integra-

tiohs denoted by f -—- dm are carried over the domain occupied
m
by the body in undeformed state, which is designated as the

reference state.
From Figure 1 we conclude that the position of the mass

element dm relative to the inertial space is Bg =R, tr+u

-C <c!

where U, =u-r = uci + vcj + WCE represents the displacement
vector measured with respect to axes &nz and Bc is the position
of the origin of these axes relative to the inertial space.

Assuming that axes xyz, hence also axes gng, rotate with angu-

4

lar velocity w = w. i w j + wCE relative to the inertial space,

g~ n~
and denoting by éé = ﬁci + ch + &c& the velocity of dm rela-
tive to &ntz due to the elastic effect, we have é + gc = éé

+ wx(r + u).
(] - mc

In view of the above definitions, the kinetic energy can

»

be shown to have the form

=1 [ R..A -1 . 7.
T—jmedBdm——Q—mR R, + 5 g

. l L] L
+ (oxf (x +u))eu' dm+ 5 [ 0’0’ dm (1)
= ‘m C ~C 2 nC ¢

where I is the inertia dyadic of the deformed body about axes

gnz. The elements of the dyadic are



En n

— 2 2 _ B
Jgg_ fm[(y+vc) +(z+wc) ldm , J_ =0 = fm(x+uc)(y+vc)dm

B 2 2 _ .
S, fm[(x+uc) +(ztw )"ldm , T, =T .= fm(x+uc)(2+wc)dm (2)

2 2 _ _
I = fm[(X+uc) +(y+v ) “ldm , T Ten= fm(y+vc)(z+wc)dm

The kinetic energy can be written conveniently in terms
of matrix notation. If {Rc} is the column matrix correspond-
ing to R.s {w} the column matrix corresponding to w, and [J]
the symmetric matrix, whose elements are the elements of the

dyadic Iar then Eqg.(l) can be rewritten in the form

2

c+&i)dm (3)

T = gnih TR STl 0T 3] @2

where {K} is the column matrix with the elements

K, = fm[(y+vc)&c - (z+w)v_] dm
Kn = fm[(z+wc)f1c - (x+uc)ﬁc] dm (4)
KE = jm[(x+uc)vc - (y+v_ )u_ ] dm

The angular velocity components w 'mn'wc do not represent

£
time rates of change of certain angles but nonintegrable combin-
ations of time derivatives of angular displacements. They are
sometimes referred to as time derivatives of quasi-coordinates.

Denoting by ei and éi(i=l,2,3) the true angular displacements

and their time rates of change, the angular velocity vector



can be written in the matrix form {w} = [6]{6}, where {8} is
the column matrix with elements 6 (i=1,2,3) and [6] is a 3x3
matrix, whose elements depend on the order of the three rota-
tions ei used to produce the orientation of axes gnz relative
to an inertial space. In view of this, the kinetic energy can

be written in terms of true angular velocities as follows

s T
{Rc}

T = R+ 2063710183 + (m1Tér+ L j a2+v2+wl)am  (5)

Nl

in which the notation

[I] = [e]1T[J)1[6] , (L} = [61T (K} (6)

has been adopted.

The potential energy arises primarily from two sources,
namely gravity and body elasticity. The gravitational poten-
tial energy is assumed to be very small compared with the kin-
etic energy, or the elastic potential energy, and will be ig-
nored. The elastic potential energy, denoted by VEL and re-
ferred to at times as strain energy, depends on the nature of
the elastic members and is in general a function of the partial
derivatives of the elastic displacements u,v,w with respect to
the spatial wvariables x,y,z. Since U Vv, differ from u,v,w
by X 1YorZgr respectively, where the latter are independent

of the spatial variables, V can be regarded as depending on

EL

the partial derivatives of U r VW with respect to x,y,z. We

C

assume that V is a function of spatial derivatives through

EL
second order but this assumption in no way affects the gener-



ality of the formulation. This particular functional depend-
ence of VEL should not be regarded as a restriction on the
problem formulation, as the final formulation is expressed in
a form which involves the partial derivatives only implicitly.
The system differential equations can be obtained by means
of Hamilton's principle. To this end, a brief discussion of
the generalized coordinates is in order. The motion of the
mass center c is generally assumed not to be affected by the
motion relative to ¢, so that it is possible to solve for the
motion of c¢ independently of the motion relative to c. As a
result, the motion of ¢, referred to as orbital motion, can
be regarded as known. We shall confine ourselves to the case
in which the first term on the right side of Eq.(5) reduces
to a known constant, so that the term can be ignored. This
is clearly the case when the orbit is circular, or the motion
of ¢ is uniform or zero. It follows that the system general-
ized coordinates are the three rotations ei(t) and the three
elastic displacements uc(x,y,z,t), vc(x,y,z,t), wc(x,y,z,t).
The elastic displacements are defined only throughout the do-
main De’ namely the subdomain of D corresponding to the elastic
continuum, where D is a three-dimensional domain corresponding

to the entire body. The domain D is bounded by the surface

S.
For the holonomic system at hand, Hamilton's principle
has the form t2
§ / Ldt=0 (7)
t



where the motion must be such that the end conditions

§8

il

1 662 = 693 = Guc = Svc = 6wc =0 at t = tl,t2 (8)

are satisfied. The integrand L in (7) is the Lagrangian which

has the general functional form

~ . . auc auc awc
IFT_VEL:IDL(ei’ei'uc"’c'“"wc'ﬁ—'v' 7T 3z
Bzuc azuc azwc

TR raonNG ! T )dD (9)
3x2 X3y 822

in which L is the Lagrangian density.
An application of Hamilton's principle leads to the sys-
tem Lagrangian equations of motion. To this end, we consider

Eq. (9) and write the variation of L as follows

3 ~ ~ ~ ~ -~
_ 3L 3L .- 3L L . 3L -
SL = f [z (3-6—_ 66]._ + I 661)+ -BT (SU.C+ -a-v— (SVC+ + I 6WC
i=1 i a0, o] o] ow
i c
L 0L s (e, 3L s ley o, oL s (e,
B(Buc/ax) X B(Buc/ay) 3y 3(3wc/32) 3z
2 2
" a-u : 3 u
+ 2BL 5 S g) + 2aL 5(a><ac)Jr T
3 (3%u_/3x%) 3% 5(57u_/oxdy) Y
2
: 3w
+ 2“‘ s~ 6(—=)] dD (10)
9 (3 wc/az ) 3z

Assuming that the functions U VW, are well-behaved, we can
interchange the variation and differentiation processes so

that, after a series of integrations by parts with respect to

10



the spatial variables, we arrive at

~ P ~ 5 ~ 5
/ [a(aaL/a ) 6(auc) a(asL/a ) 6(auc)+"—'+ a(aiL/a ) S(a:c)
D Ug/ 0% x o’ °Y Y c/ %%
2 2
" 3 u - 27u
bt () —— 6 (oxag) * T
5(3%u_/3x") 9% 3 (3°u_/3x3y) y
5L azwc
+ 5 >— §(—=)1dD = i é;[uc,vc,wc]~63c dp,
9(0°w_/0oz") 0z D
C e
+ §j[uc,vc,wcl-§k[uc,vc,wc] . 3 =1,2; k= 3,4 (11)

where zjiu ,iv ,1& ) is a differential operator vector with
c o) o

components‘xu.,J;C,J;c defined over the domain De and

B.(B.,_ ,B._ ,B. ), B (B ,B ,B. )

=3 Ju ) av, v k kuC kvc kwc

ator vectors defined at the surface S bounding the domain De’

are differential oper-

where the latter is recalled as being the domain within which
the body possesses elasticity. We note, in passing, that in
general if the components<yfégare of order 2p, where p is

and integer, the ones of Ej and B, are of order 2p-1 or less.
Introducing Egs. (10) and (11) into (7), integrating by parts
with respect to time, and considering conditions (8), we obtain

the ordinary differential eguations for the attitude motion

oL d

- ( -
90 dt 45
1

EE_) =0 , i=1,2,3 (12)

and the partial differential equations for the elastic motion

o}

Lt
)




3L 5 3L B
3u_ ot (=) +‘I'u [uc’vc’wc] =0
au C

oL 9 oL
= - () + L u,v w ] =0 (13)
oV ot avc vc c’ ¢’ cC
3L 5 oL _
W 5t (=) +"Zw [uc,vc,wc} =0

(o] ch c

where Egs. (13) must be satisfied within the domain D . More-
over, the solutions of these equations must satisfy the bound-

ary conditions
§j[uc,vc,wc]- gk[uc,vc,wc] =0onsS, j=1,2; k= 3,4 (14)

We note that the motion of the system is described by a "hybrid"
set of equations since Egs.(l2) are ordinary differential equa-
tions and Egs.(13) are partial differential equations.

In any system in which elastic deformations take place
there is certain damping present. We shall assume that the
damping is internal and independent of the rotational motion
of the body. We shall denote the components of the distributed

~ A~

damping forces by Qu ’ QV ' Qw so that, whereas Egs. (12) re-
c c c

tain their form, Egs. (13) become

L 3 3L A

gu -3t () 4”zu [ug,vorwl + 0, =0
c 3 c c

3L L .

v g_t (_3_-—‘) +Iv [ug Vgl +0, =0 (15)
c BV c c

JL 3 oL "

W T € () +Iw [agrvgw 1 + Oy =0
c ow c c

12



The boundary conditions are not affected by damping so that

they remain in the form (14).

Hamilton's Canonical Equations

We shall find it more convenient to work with a set of
first-order Hamiltonian equations instead of the second-order
Lagrangian eguations. The order here relates to time and not
spatial variables. To obtain the set of first-order differen-

tial equations, we consider the Hamiltonian defined by

—a%‘ éi +/ (——BI.’ 13c+ ——-—aI:' \'rc+ —-al“
1 39, D Ju v ow
i e c c c

as)
i
Il W

: wc)dDe - L (16)

and note that the Hamiltonian has a "hybrid" form, as it is
both a function and a functional at the same time. Introducing

the momenta

p, =% i=1,2,3
%1 a6,
i (17)
) S}/ S}
= = = = =
uc au vc v wc ow
c c c

where the latter three are momentum densities, the Hamiltonian

assumes the form

3 - . R
H= Jp 6. + [ (p U +p. Vv +p._ w )dD_ -~ L
i=1 ei 1 De uc C VC C Wc C e
N ~ ~ ~ au . Ju ow
= [ H(e,,u_,v_,wW_,p. ,P.. 1P, +D <L _c<c ___
D ll CI CI cI e.l u ’ v 14 W 14 BX Iay 14 Iaz 14
e i c c
azuc 3 u, azwc
’ " )dD (18)
aX2 IXJY 322 e



in which H is the Hamiltonian density. Considering both forms
of H in (18), we can write the variation of the Hamiltonian

as follows
3

§H = .Z(Gpe.ei+p6.66i)+ f (6p, utp, Su_+---+ p_ &w_)dD_
i=1 i i De c c c
3 oL oL H Bfl 8£. 3£. .
-V (S s8, + = 86,)- [ [5— su_ 4 oo— SV _t-———+ —/— dw
. 36, 1 . 1 Ju c LAY c . c
i=1 i 26, D C o] ow
i e c
N 5L 6(3uc) N 5L 6(3uc)+____+ 5L G(BWC)
§Téuc/ax) X B(Buc/ay) 3y 3(3Wc/3z) 32
2 2
- a u " 3 u
+ e S (——)+ — = S (axmy) * T
3 (9 uc/Bx ) X 3 (3 uc/Bxay) Y
2
” 3w 3
byt s (—$)1aD= | (F5- 60y + gp— )
3(0°w _/0z™) dz i=1 6. i
c i
- " o - 3u
oH oH oH ~ 9H C
+ [ [— su_ + ——— 6V _ +-==+ —— Sp_ + § (=—=)
D, du c A c P, W B(Buc/ax) X
- su g ° ow i’ azu
oH C oH C JH C
+ S ( Y-t 8 ( )+ 5 ( )
a(auc/ay) Y AYawc7ﬁz) 3z 8(82uc/3x2) 8x2
2 2
. o u o 3w
+ —5 28 § (o) ot ——y o §(——5) 1dD (19)
3 (3%u_/3x2y) Y 3 (3w /927) 32z

Recalling definitions (17) and comparing coefficients of like

variations in both forms of (19), we obtain the Hamiltonian

equations

.+ _ 93H . _ _ 3H .

ei = 3p r Py = ' ’ i 1,2,3 (20a)
ei 1 1

1k



4 oH v = oH w oH
c - ~ r c - Py 7 c - =
Bpu apv Bpw
c c c
’ aﬁ -
= - — +
Py du +Iu [uc’vc’wc] Qu
c c c
(20b)
2 aﬁ -
= = — +
Py v +‘zv [uc’vc’wc] Qv
c c c c
2 _ aﬁ A
Py = ow +£w [uc’vc’wc] + Qy
c c c c

where Egs.(20b) must be satisfied at every point of De' Note
that to obtain the second half of Egs.(20a) and (20b) use has
been made of Lagrange's equations, Egs.(12) and (15). Of
course, the boundary conditions, Egs.(14), remain the same.
When the kinetic energy is quadratic in the generalized vel-

ocities, the Hamiltonian reduces to the form
H=T+ Vo (21)

which is recognized as the system total energy.

Stability of Hybrid Dynamical Systems

The motion of an n-degree-of-freedom dynamical system can
be described by 2n first-order differential equations of motion,
namely, Hamilton's equations. The state of the system of any
time t is given by the 2n canonical variables qk(t), pk(t)

(k = 1,2,--~-, n), where q, are generalized coordinates and Py
generalized conjugate momenta. For a given set of initial con-

ditions, the state of the system can be represented by a vector

15



x(t) in a 2n-dimensional vector space, known as the phase space.
The Liapunov definition of stability places certain restrict-
ions on the norm lix(t)}|. 1In particular, the trivial solution
is stable if for any arbitrary ¢ > 0 and time t0 there is a

number &(e,t > 0 such that if the inequality ”50” < § is

0

satisfied at t then the inequality ||x(t)]l < ¢ is satisfied

OI

for all t > t From the preceding discussion it is clear

0°
that the stability definition for a discrete system places re-
strictions on the generalized coordinates and momenta Qpr Py

or alternatively on the genéralized coordinates and velocities
Qs G (k = 1,2,-==, n).

In the case of distributed systems the generalized coor-
dinates depend not only on time but also on spatial coordinates.
The displacement vector at any point P with spatial coordinates
x,y,z, so that P = P(x,y,z), and at any time t is given by
u = u(P,t), where u is a vector with components u(P,t), v(p,t),
and w(P,t) along x,y, and z, respectively. We shall be con-
cerned in this paper exclusively with cases in which a small
initial state ensures a small initial potential energy.

Next let us consider a hybrid system with the state vec-
tor given by v = gd(t) + yc(P,t), where yd(t) and gc(P,t) re-
present discrete and continuous variables, respectively. The

system is described by the set of differential equations

¥ = Vly, 0y /ox, by /oy, —-= , 3°Py_/az’p) (22)

(o]

16



where V is a vector function depending on the state vector and
spatial derivatives of the state vector through order 2p, in
which p is an integer. The continuous variables must also
satisfy appropriate boundary conditions. The state vector can
be imagined geometrically as representing an element in a space
S which can be regarded as the cartesian product of a finite
dimensional vector space and a function space, the first cor-
responding to Ygq and the second associated with Voo The motion
of the system can be interpreted as a continuous mapping of the
space S onto itself, which implies that if the state of the sy-
stem at a given time is known, then the state is known at any

subsequent time. A solution of system (22) constant in time,

namely, a set of constants satisfying

/ax ey /ey, -—- , 3%Py_/5zP) = 0 (23)

vy, oy,

is known as a singular point or equilibrium point. We shall
be interested in the stability of motion in the neighborhood
of equilibrium points. Assuming, without loss of generality,
that the origin of S is an equilibrium point, we shall concern
ourselves with the stability of the trivial solution, known
also as the null solution.

Stability is now defined in a manner analogous to the
Liapunov definitions of stability for discrete systems. To
this end, we first introduce the norm |y (t)]l = |jyq ()l + J
”yc(P,tH|dD(P), where D is the domain over which continuous

variables are defined, and denote by ||y the value of the

oll

17



norm at t = t;. Then the trivial solution is defined as stable
if for any arbitrary positive quantity e and time t0 there ex-
ists a positive number é(s,to) such that the satisfaction of
the inequality ”30" < § implies the satisfaction of the in-
equality ||v(t)]l < e for all t > t,- If, in addition, iim i
lv (£)]] = 0, then the trivial solution is asymptotically ;table.
It is stressed again that we are concerned exclusively with
the cases in which a small initial state ||y || implies also
small spatial derivatives, at least through order p. The
trivial solution is unstable if it is not stable.

To test the stability of system (22) in the neighborhood
of the trivial solution, we define a scalar functional U = U
(y,agc/ax,ayc/ay, -, apgc/azp) such that U(0,0,---,0) = 0.
Actually U is both a function and a functional simultaneously
but we shall call it a functional. We note that U depends on
spatial derivatives through order p, as opposed to V which de-
pends on derivatives through order 2p. Moreover, the total
time derivative of U along a trajectory of the system is de-
fined by U = Au/dt = U -V, + nych-{gcdD = JU, Y4 + ij_ch-ycdD,
where the subscripts d and ¢ designate quantities pertaining
to discrete and continuous variables, respectively.

At this point we consider the following theorems:
Theorem 1 - If there exists for system (22) a positive (nega-
tive) definite functional U whose total time derivative U is
negative (positive) semidefinite along every trajectory of (22),

then the trivial solution is stable.
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Theorem 2 -~ If the conditions of Theorem 1 are satisfied and

if in addition the set of points at which U is zero contains

no nontrivial positive half-trajectory, then the trivial sol-
ution is asymptotically stable.

Theorem 3 - If there exists for system (22) a functional U
whose total time derivative U is positive (negative)definite
along every trajectory of (22) and the function itself can
assume positive (negative) values in the neighborhood of the
origin, then the trivial solution is unstable.

Theorem 4 - Suppose that a functional U such as in Theorem 3
exists but for which 6 is only positive (negative) semidefinite
and, in addition, the set of points at which 6 is zero contains
no nontrivial positive half-trajectory. Suppose that in every

neighborhood of the origin there is a point ¥ such that for

arbitrary ty ” 0 we have U v=v. 0(< 0). Then the trivial
) —nmo

solution is unstable and the trajectories y(yo, to, t) for

which U v=v_ 0(< 0) must leave the open domain ||y|l < ¢ as
=Yoo

the time t increases.

A testing functional U satisfying any of the preceding
theorems is referred to as a Liapunov functional. Theorems 1
and 3 are associated with the name of Liapunov, whereas Theor-
ems 2 and 4 with that of Krasovskii. A discussion of these
theorems for discrete systems can be found in Ref. 1 (Sec. 6.7).

A functional is defined as positive (negative) definite
if it is never negative (positive) and it is zero only if v is

identically zero. Continuous variables must be zero over the
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entire domain D. A functional is said to be positive (nega-
tive) semidefinite if it is never negative (positive) but can
be zero at points other than the origin.

Since the scalar functional U depends on spatial deriva-
tives of y, it may be difficult at times to determine its sign
properties. 1In such cases it may be possible to define another
scalar functional W(y), depending on the state vector y alone,
and such that U > W. Then we can state the following:

Stability Theorem - Suppose that for system (22) there exists

a scalar functional U such that U is negative semidefinite
along every trajectory of (22) and, in addition, the set of
points at which U is zero contains no nontrivial positive half-
trajectory. Then, if a positive definite functional W can be
found such that U > W, the trivial solution y = 0 is asympto-
tically stable.

The above Stability Theorem has significant implications

as far as the stability analysis of hybrid dynamical systems

of the type considered here is concerned.

The Hamiltonian as a Liapunov Functional

We shall show next that under certain circumstances the

Hamiltonian can be used as a Liapunov functional. Taking the

total time derivative of H from the first form of Eqg.(18) and
using Egs.(12)and (15), as well as boundary conditions (14)

and definitions (17), we obtain

A~ ~

a uC + QV c + QW wc)dDe (24)
D C C C

e
Il
—
o
Qe



Next we assume that the damping forces are such that H is neg-

ative semidefinite.
H <0 (25)

A ~

Moreover, due to coupling, the forces Qu , Qv ’ Qw are never
c c c

identically zero at every point of the phase space but they
reduce to zero at an equilibrium point. Hence, if the Hamil-
tonian H is positive definite at an equilibrium point, then by
Theorem 2, H can be regarded as a Liapunov functional and the
equilibrium point under consideration as asymptotically stable.
Cn the other hand, if H is not positive definite and there are
points for which it is negative, then by Theorem 4 the equili-
brium point is unstable.

In view of the preceding discussion, we shall consider the
Hamiltonian as a Liapunov functional. As indicated by Eq.(23),
the equilibrium positions are thos rendering the right sides
of Egs.(20) equal to zero. Hence, the equilibrium positions

are the solutions of the equations

T

__gH =0 , -2 _9o , i=1,2,3 (26a)
P 20,

6. 1

i
M _oH  _ 3 _
op ap P

Yo Ve Ve
oH —
Ju +Iuc[uc’vc’wc] =0

(26b)
-8 L u Vv oW ] =0
v, c'c’c

- — +I [u,v,wc]=0
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where Egs. (26b) must be satisfied at every point of D,.-

From Eg. (21) we see that for a conservative system the
Hamiltonian can be expressed as the sum of the kinetic and po-
tential energies, where the kinetic energy is given by Eq. (3).
The elastic potential energy depends upon the type of system
considered, but is in general a function of the elastic dis-
placements u,v,w, and spatial derivatives of these displace-
ments. If we assume that the elastic displacements are inde-
pendent of one another, V can be shown to reduce to

EL

1
Ve, = 3 ID (uI.u[u] + VIV[V] + WIW[W])dDe (27)

e
where, assuming that the differential operators Iu, IV, ande
are of order four, the elastic displacements u,v, and w are

subject to the boundary conditions

Bju[u] = 0 or Bku[u] =0
ij[v] =0 or Bkv[v] =0 onS, j=1,2; k= 3,4 (28)
ij[w] =0 or Bkw[w] =0

Under these conditions, the eigenvalue problem corresponding
to the elastic motion separates into three individual eigen-
value problems defined by the differential equations

_ 2 _ .2 1o~ a2
L ul = ag Mol LoIvl = ag M Iv] L Iwl = a0 M [w] (29)

which must be satisfied over the domain D, and by the boundary

conditions (28), respectively.
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At this point let us define the Rayleigh guotient associ-

ated with u as follows

fD uafu[u] dp
R (u) = —5 (30)
ID u Mu[u] dp_
e

For positive definite operatorsEfu and Mu the quotient Ru(u)
is always positive. Moreover, denoting by Aﬁl the lowest eig-
envalue associated with the vibration u, it can be shown that

(see Ref. 17, Sec. 5-14)

2
ul

Analogous statements can be made in regard to the displacements

R,(u) > A (31)

v and w. It follows from (30) and (31), together with similar

expressions for v and w, that

1
Ver = 3 fD (qu[u] + VIV[V] + WIW[W])dDe
e (32)
1 2 2 2 2 2 2
27 po(Aulu TALY T AT )dDe
e

where the operators Mu’ M _, and Mw in this case turn out to

A\

be merely the mass density p. If in addition the displacements

U_r Vs and W (which differ from u, v, and w by rigid-body

translations x , vy

c , and Zc) are independent, it is not diffi-

c
cult to show that

1 2 2 2 2 2 2
VEL 2 2 fD o (Mg1¥e * Ap1Ve * A1) 9D (33)

e

However, if Ugr Vg and W, are coupled through the center of
mass motion Eq. (33) does not hold in general. We shall be con-

cerned with cases where Eq. (32) is valid but not Eg. (33).
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Let us define a functional « as follows

_ 1 2 2 2 2 2 2
k=T+ 3 po (Agqu® + Agve + A wo)dD (34)
e
It follows from Egs.(21) and (32) that
H > « (35)

Hence, from our Stability Theorem the equilibrium solution is

asymptotically stable if «k is positive definite.

Torque-Free Systems

i When there are no motion integrals, the state at time t
of the hybrid system considered is given by an element in a
space S which can be regarded as the cartesian product of the
finite dimensional vector space defined by ei, pe'(i=l,2,3)

i

A ~ ~

and the function space defined by Ugr Voo W, puc, pvc, pwc.

The space S is simply the phase space. Alternatively, the
space can be regarded as the cartesian product of the vector
space defined by 05 éi(i=l,2,3) and the function space defined

by u,, Vc’ Wor Ul Vi Qc. The motion of the system can be
interpreted as a continuous mapping of the space § onto itself.
This implies that if the state of the system at a given time
is known, then the state is known for any subsequent time.
Under certain circumstances the system possesses motion
integrals. For example, such integrals occur when the system

is free of external torques, in which case the motion integrals

are simply momentum integrals. These integrals can be regarded

as constraint equations relating the system velocities. Con-
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straints may be interpreted as restricting the motion to a
subspace of a correspondingly smaller dimension.

Let us assume that the system considered is free of exter-
nal forces, so that the three torgue components about the mass
center ¢ are zero. It follows that the angular momentum vec-

tor about ¢ is conserved

= e - =
L. = fm(£+‘ic)x[5~‘c + gx{r+u )] dm = g = const (36)
in which g denotes the constant angular momentum vector. In

matrix notation, Eg.(36) assumes the form
[J1{w} + {K} = {8} (37)

where [J] is the inertia matrix of the deformed body, namely,
the matrix representation of the inertia dyadic whose elements
are given by Egs.{(2), and {K} is the column matrix of the ang-
ular momentum components due to the elastic motion; the elements
of {K} are given by Egs.(4). Clearly, {g} is the matrix repre-

sentation of the vector 8.
Equation (37) can be used to eliminate the angular velo-
cities éi(i=l,2,3) from the kinetic energy. Indeed, premulti-

plying Eq.(37) by [J]“l and rearranging, we obtain

1

{w} = [J] ~{B - K} (38)

Introducing Eq.(38) into Eq.(3), and ignoring the term due to

the orbital motion, we can write the kinetic energy in the form

T="T_ + T (39)

25



in which

1 e T, 1T -1
T, =7 [ Ty an - 3 0T (40)
is a quadratic expression in the elastic velocities ﬁc, Gc’ &c’
and
l -
T, = 5 (6171317 ) (41)

is an expression in the angular coordinates and elastic dis-
placements alone, hence it contains no velocities. It turns
out that not all three angular coordinates are present in T0
but only two of them. To show this, we denote by BO the mag-
nitude of the initial angular momentum vector, assume for con-
venience that the direction of the angular momentum vector
coincides initially with the inertial axis Z, and express the
angular momentum matrix {g} in the form 30{2}, where {8} is

the column matrix of the direction cosines 3% be-

ez’ *nz frg

tween Z and axes &, n, ¢, respectively. These direction co-

sines can be expressed in terms of only two angular coordinates.
Inserting Eqg.(39), in conjunction with expressions (40)

and (41), into Eqg.(34), we conclude that the functional « can

be written in the form

K= Ky + Ko (42)
in which Ky = T2 and
_ 1 2 2 2 .2 2 2
Ky = Ty + 3 po(Aulu + AL VT o+ A wT) dDy
e (43)
1 .2 T, . -1 1 T, 2
=5 Bg (217131 “{e} + 5 po{u} [A3d{u} dp
e
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where {u} is the column matrix of the elastic displacements u,
v, w and FA§J is a diagonal matrix of the lowest eigenvalues
associated with these displacements. The functional Kk, can be

regarded as a modified dynamic potential. By virtue of inequa-

lity (32), we conclude that Ky is in general smaller than (or
equal to) the ordinary dynamic potential Ty + VEL'

Since « can be written as the sum of Ky and Ko s where K1
is a quadratic functional in the generalized velocities, and
Ky depends only on the generalized coordinates, « is positive
definite if and only if S and Kk, are both positive definite.
By definition the quadratic part of the kinetic energy, T2, is

positive definite, so that we conclude that if k, is positive

2
definite «k is positive definite.

To obtain the testing functional Kor We recall that the
elements of the inertia matrix [J] of the deformed body are
given by Egs.(2). It is not difficult to show that the matrix
[J] can be written as the sum of two matrices [J]0 and [J]l
where [J]0 denotes the inertia matrix about axis x,y,z of the
body in undeformed state which really represents the matrix
of principal moments of inertia for the undeformed body. Ma-
trix [J]l represents the change in the inertia matrix due to
the elastic displacements about axes &,n,z as well as the
change in the inertia matrix of the undeformed body due to the

translations Xor Yor 2gr of the origin. Since the elastic dis-

C

placements u , v, w_, as well as the coordinates x , v ., z__,
c c c c c o

of the center of mass are assumed small, the matrix [J]l is
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small compared to [J]O. Hence, writing the matrix [J] as

[dJ] = [J]0 + [J]1 (44)

because [J]l is small compared to [J]O, it is not difficult

to show that

1 -1 -1

_ -1_ -1_ -1 -1 -1
[K1=[317"=131 57 =131~ [3) 317 +[31 57 [31 1317 3] (3] (45)
where [K] denotes the inverse of [J]. We may therefore express
our testing function in the form
1 2, T 1 T 2
Ky = 5 60{2} [K1{2} + > fD {u} FAIJ{u}dDe (46)

e

where [K] is given by Eq. (453).

The problem of investigating stability reduces to that of
testing expression (46) for sign definiteness. To this end,
we expand €y in the neighborhood of an equilibrium point E
and ignore terms of order greater than two. This process leaves
us with a quadratic expression, denoted by Ko E’ in the gener-
alized coordinates. However, the generalized coordinates re-
presenting the elastic displacements appear in integrals de-
fined over the elastic domain, which precludes its testing for
sign definiteness by standard means. This problem can be cir-
cumvented through the use of modal analysis in conjunction with
series truncation. To this end, we must solve the eigenvalue

problems associated with the elastic displacements u, v, w,

and represent these displacements by finite series of corres-
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ponding eigenfunctions multiplying associated generalized co-
ordinates, where the first depend on spatial coordinates alone
and the latter on time alone. Now we are in the position to
perform integrations with respect to the spatial variables and

write « as a gquadratic form in the newly defined generalized

2l g

coordinates. We can define the Hessian matrix [#]E correspond-
ing to this quadratic expression, and it should be noted that
the order of the Hessian matrix depends on the number of eigen-
functions used in the series representing the elastic displace-
ments. The sign definiteness of [:le]E may be ascertained by
means of Sylvester's criterion (see Ref. 1, Sec. 6.7). An alter-

native approach to testing the sign definiteness of Ko involves
E

defining new coordinates representing certain integrals appear-
ing in K2|E and using Schwarz's inequality for for functions to
discretize KZ‘E. In general this procedure involves considerably
less effort than using modal analysis and yields sharper stab-

ility criteria.

The Stability of High-Spin Motion of a Satellite with Flexible
Appendages. |

The general theory developed in the preceding sections will
now be used to investigate the stability of a satellite simu-
lated by a main rigid body and six flexible thin rods, as shown
in Figure 2a. In the undeformed state the body possesses prin-
cipal moments of inertia A,B,C about axes x,y,z, respectively,
and the rods are aligned with these axes. The body is initi-
ally spinning undeformed about axis z with angular velocity
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%f

subdomains D_,D_,D_, bounded by S_,S. ,S_, where
X'y’ Tz x'"y'Vz

DX : —(hx+2x) < X <
D : —-(h +

y (hytiy) <y <
Dz : —(hz+zz) < zZ <
Hence r = xi + yj +

D
yl

brations,

and r
.

-h

zk over D-D , r = xi over D_, r

= zk over Dz.

-h
X

r h

, h

r by

< X < (hx+gx), SX

<y < (h

+
Y

),

S

y

< Z < (hz+£z), Sz

1l
|+

1l
|+

+

The domain of the elastic continuum De consist of three

r + (hta)
, + (ot )
’ i (hz+£z)
= y] over

Assuming only flexural transverse vi-

it follows that

u = =v_ 3+ wk, u

- ~X 4 X ~C

u=g,=ud+wk g
= = + ]

- Ez uz& Vzl’ “C

From Egs.(2) we conclude that the moments and products

ertia of - the deformed body have the values

_ 2 . 2 2
Jgg = A + pox(vcx+wcx)dx + poywcy
X Y
_ 2 2
J .= B+ pochxdx + poy(uCY
X Y
_ 2 2
JCE = C + poXchdX + poyuC
X Y
JEn = Jng =poXxvcxdx +poyyucydy +

30

X

y

2
+wcy)dy + f

2

P
D
z

u

4

D
z

v
Z Ccz Ccz

dy + f sz2
D

k over D
hat Y
J over Dz

of in-

2, 2
Zdz + m(yc+zc)

P u2 dz + m(x2+zz)
z cz c “c

2 2 2, 2
ydy + poz(uCZ+vcz)dz + m(xc+yc)

(47)

dz + mX Yy,



= = + dz +
ch JCg poXchxdx+poyucywcydy pozzucz z mx Zz

X Yy z

= = dy+ zv_dz + my 2z
JnC Jcn f vacchde+IDpywcy Y poz cz yc c

be y z
where 0 py, e, represent mass per unit length associated with
the respective rods. We shall assume that the mass of the rods
is symmetrically distributed, such that px(—X)=px(X),py(—y)

= py(y), and pz(-z) = p (z). Examining the elements of [J],

we conclude that

A 0 0
[J]O =10 B 0
0 0 C
(48)
J_ _-A -
I3 JEn JEC
= - -B -—
[J]l Jni Jnn JnE
-J -J -C
3 on [

We shall be interested in investigating the stability of
the high-spin motion in which the undeformed satellite rotates
with constant angular velocity Qg about axis z. Hence, we
consider the stability in the neighborhood of the equilibrium
point

6, =8, =u_=u_ =v,_ =V _=w_=w_=0 (49)

which, in turn, implies that

u = u = v = v = W = 0 (50)
cy cz cx cz cx




Since in the equilibrium configuration the body spins about
axis z with angular velocity Qs’ where z coincides with the in-
ertial axis Z, it follows that 60 = CQS. Moreover, from Fig.

2b we conclude that the direction cosines have the values

= - COS 8, sin 62, 2 = sin el, and £ = cos 61 cos 62.

RgZ 1 nz tZ
Introducing all these values into the first term of Eq. (43),

considering Eq. (45), and ignoring terms in el,ez,u ’

,u
cy’ “cz

V_ VW

ex'Vez Yo and Z of order larger than two (as

w X
’ Cy’

cX C

well as constant terms), we can write

2, .T _2.C a2 o € gy o2
Bol2? [K]{z}IE = af[g (C-B)oy + x (C-A)e;
- 2% ([ o xw_dx + [ p_zu__dz) + 2 S (f o yw_ dy
A "2 p X ©X% p 2 ¢z B "1 p ¥ ¢y
X Z y
+ 0 ,2V,42) - i vaix ax - [ o ui dy
D D p ¥ ¥
z X y
2 2 2 2 1
- ijz(ucz + v dz - mix_ + y)) + % (poXchxdx
z X
v o zu_dz)? + L(f o yw_ dy + [ o_zv__dz)?] (51)
p 2 €2 B p Y ¢©Y p Z CZ
z y z

Recalling our testing functional Ko, @s given in Eq. (43), we
note that the second term, due to the elastic potential, in-

volves the actual elastic displacements uy, U, == wy, where-

as Eq.(51), representing the first term of Ko involves the

displacements u__, u__, —-—-— , wcy’ as well as the center of

cy cz

mass coordinates, X and Yoo For consistency, we will replace
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in Eq. (51) the displacements u__, u —, W by u - x_,

cy cz' cy y c
u, - X , T wy = 2. respectively. To this end, we note
that the quantities P py and p, are even functions of the
spatial coordinates. Considering the definitions of the do-

mains Dx’ Dy and Dz, and recalling that Xor Yaor 24 do not de-

pend on spatial coordinates, it is not difficult to show that

Dz D
2 (52)
fD o X W, dx = fD X w  dx
X X
w dy = w_d
ID 0¥ Woy Ay ID py¥ W, dy
y y
But the definitions of X, and Y, are
x == (f pou, dy + [ p_u_ dz)
c m vy Pz z
D DZ
Y (53)
_ 1
Yo = & (f PV, dx + / v, dz)
D D
X z
so that
2 2 2 2 2
dy+ dz= - -m_-
poyucy vy pozucz z fDoyuydy+pozuzdz (2m my mz)xC
Y Z Y Z (54)
f P V2 dx+f p v2 dz=f o v2dx+f o v2dz - (2m-m_-m ) 2
X CX zZ Cz X X zZ 2 x Mz’ ¥¢
Dy D, Dy Dz
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h_+2 h +2 h +2
X X y z Tz

where m_ = 2 / p, dx , m, = 2 | v dy , m, = 2 / p, dz. In-
h h h
X vy z

serting Egs.(52) and (54) into Eq.(51), we obtain

T

Bg{l}T[K]{JL}l = a2iSc-Bre + Se-Are] - 2 § 0, (f o xw ax
E D
X
C 2
+ [ o zu dz)+ 2 = 6. (f p yw d + [ p_zv dz) - [ o vi dx
Dzz z B "1 Dyy YV Dzz z Dxx X

2 2.2 1l 2
- poyuydy - poz(uz+vZ)dz + K(f p xw dx + pozzuZdz)
y z X 2z

1 2 2 2
+ E(poyywydy + poszzdz) +(m-m_-m )y, + (m m, mz)xC] (55)
v z
From Eg.(55) we note that the terms involving xi and yz are
always positive so that, defining a new testing functional

which is obtained from Kzl by setting X, =Y, = 0, we

K
3|E E c

can conclude that
kgl < K2| (56)

It is clear that the case where the motion of the mass center
in the x and y direction is zero is the most restrictive case
and the satisfaction of stability criteria obtained by ignor-
ing this motion ensures stability for cases with arbitrary
center of mass motion. In view of this, in the sequal we shall.
ignore the motion of the mass center. We note at this point

that « is still in a form not easily tested for sign de-

3g

finiteness. We shall now consider two methods for circumventing
this problem, namely, the modal analysis and the method of in-

tegral coordinates.
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Normal Mode Stability Analysis

a. General derivations.

We recall that the elastic displacements uy, U,r == wy
are assumed to satisfy individual eigenvalue problems defined
by differential equations (29) and boundary conditions (28).

At this point, we consider the eigenvalue problem given by

_ .2
L [ul = a5 M [ul (57)

where;(u is a linear homogeneous self-adjoint differential op-
erator and Mu is merely the function p. Under these conditions,
the function u(P,t) may be represented by a superposition of
space-dependent normal modes ¢i(P) multiplying corresponding

time-dependent coordinates ni(t)

u(bP,t) =

he~—3

64 (P)n; (£) (58)

i=1

where P represents the point x, y, z. Furthermore, the eigen-
functions ¢i(P) are orthogonal and, if they are normalized such

that
ID p(P)¢i(P)¢j(P) dD (P) = 6ij (59)

it follows that

[ 4;(P) L [65(P)IAD(R) = Ay 8, (60)
D
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where Gij represents the Kronecker delta.
We shall use these results later to eliminate the spatial
dependence in 3| In this section we shall consider a test-
E

ing functional slightly different from « Recalling Eq. (31)

3l
we note that VEL was replaced by a lower bound using Rayleigh's
guotient. In using modal analysis this yields no particular

advantage and hence we consider the testing functional Ky
E

defined by

<4l = % sg{z}T[K]{z} + Vg (61)
E B

which represents the original dynamic potential evaluated at
equilibrium. We note again that in the first term of Eqg. (61)
the motion of the mass center is ignored. 1In analogy with pre-
vious reasoning, if Kg . is positive definite the equilibrium
point is asymptotically stable.

We shall now consider the form of the elastic potential
energy. To this end, we must take into account the effect of
the centrifugal forces. Because the satellite has significant
spin about axis 2z, whereas the angular velocities about axes
x and y are relatively small, the centrifugal forces acting

over the domains Dx’ D , and Dz are all different. First we

y
wish to distinguish between in-plane and out-of-plane vibrations
of the rods associated with domains Dx and Dy‘ Moreover, we

must distinguish between axial and transverse components of

the centrifugal forces. It is not difficult to show that domains
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DX and Dy are subjected to the axial component of the centri-
fugal force alone for the out-of-plane vibration and to both
the axial and transverse components for the in-plane vibration.
On the other hand, domain Dz is subjected to the transverse
component alone. The transverse components are accounted for
in that part of the kinetic energy not involving velocities,

so that only the axial centrifugal forces must be included in
the elastic potential energy. Hence, the potential energy

can be written in the form

Ver = Verx t Very t VeLz (62)
where
1 22v, 2 2w 2
Vo = 3 J [EI, (—%) + EI_ (—%) ] dx
D X 99X X 99X
X
1 avx 2 awX 2
vyl ElR) ) )
X
1 Bzuy 2 32w 2
Very =7/ IEI, (—H + Bl (—H 1 ay (63)
D y 9y Yy 9y
N
1 su._ 2 awy 2
t 35 ID Py[(_zay) + (Ty) 1 dy
Y
1 azuz 2 azvz 2
Very, =3/ [EL, (—=) + EI_ (—) ] dz
Dz Z 02 Z 902

where Px and Py represent the axial centrifugal forces present

(see, for example, Ref. 77, p. 443).
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The elastic potential energy can be written in a more
convenient form., To this end, we recall that the boundary con-
ditions for the clamped-free rod corresponding to the domain

h < x < h + 2 are
X X X

avx(x,t)
vx(x,t) = ——x = 0 at x = hX ’
(64)
azvx(x,t) 5 32vx(x,t)
EIV —— = §§[EIV _____TT___] =0 at x = hx + lx
X 9X X axX

Similar boundary conditions can be written for the remaining
rods. In view of this, integrating Egs.(63) by parts and in-

serting the result in (62), we obtain
2 2

1 82 P Vx 32 2 wX
Vg = 7t vy T (B, —3) 4wy e (BL, ——5)] dx
DX X X 99X 9X X 33X
5 avx 5 awx
- ID [Vx §§'(Px ax) t Yy X (Px ax] ax
x
82 azu 32 27w
+ [ Tu, 2= (BI ) + w, S (BT, —)] dy
Dy oy y 9y 3y Yy 9oy
5 au 5 oW
- — (P —2&) + w— (P d
ID [uy 5y ( . By) v 3y ( y —3%)] %
Y
2 82u 2 azv
+ [ Iu, S (EI )+ 3—2- (ET )1 dz}
Dz 9Z pA 9Z 2z Vz 9Z
(65)
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The complete expression of Ky is obtained by inserting ex-
E
pression (65) into (61). In accordance with Eqg.(58), we repre-

sent the elastic displacements by the following series

e
X

(t) + )

i=1

w

¢ .(X)Vx

x0i oi

=

<
]
'—l-
le~1 O

over D (66a)
X

»

e
Vo (RIV, o5 (B) + _; Veei (XIW, 5 (€)

|
|

£
]
’_l.
i~ O

e

yei(y)Uyei(t)

o
]
i~ O

¢ (£) + ) ¢
=1

yoi(y)Uyoi

-
'_.l

over D (66b)
Y

as

e
y
IJ}yoi(y)wyoi(t) + El wyei(y)wyei(t)

£
e
1]
’-l-
le~1 O
}-—l

N

(z)U_ . (t)

e
) .(z)Uz () + ,z Prei zei

ZO1l ol

=
o

[wd
I
’_,,
e~ O

over Dz (66¢c)

N

e
ll)zoi(Z)Vzoi(t) + .z Il’zei(z)vzei(t)

<

Il
e~ O
=
'_l

r ¢

r O,r ©,r O, €, are constant integers, ¢ R

X011 xei

are eigenfunctions associated with the elastic

rods, and Vx o Vo o, W ., Vz are corresponding gener-

oi xel X001 ei

alized coordinates, in which the letters o and e designate

odd and even modes of deformation, respectively. The functions

$oi’ ®xei’ Yxoi’ T Vxei satisfy the relations
¢xoi(x) = ¢x01(—x) = ¢xe1(x) = ¢xei(—x)
(67a)
1Px01(x) = - 1Pxoi(_x) - 1l’er.(X) = Ipxel(_x)
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P01 (¥) = = by (5Y) = bue; (¥) = 6, (-Y)

(67b)
lPYOl (Y) = = wy01(-Y) = lPyel(Y) = ‘Pyel("Y)
V201 () = = 0,5;(-2) = ¢, (2) = 4, (-2)

(67¢c)
Vpoi (2) = = V05 (=2) = ¥, . (2) = Vzei (72)

Consistent with our previous discussion of the nature of
the centrifugal forces, we recognize that the eigenfunctions
entering into expressions (66) are defined by two distinct ty-
pes of eigenvalue problems, namely, one type for the vibration
of the radial rods associated with domains DX and Dy and an-
other type for the axial rods associated with domain Dz. For
the radial rods, a typical eigenfunction, say wxoi’ must sat-

isfy the differential equation

2
a2 (EI d lPxoi) _ g_( dwxoi) = 12 i=1.2 ——u
2 W 2 dx ' x dx wxi Px¥xoi’ =14y
dx x dx

(68)

over the domain h_, < x < h, + ¢_, where y__ . is subject to the
X X X xoi

boundary conditions

dwxoi
l‘bxoi(hx) T Tax _ =0
x—hX
i=1,2, --- (69)
2 2
Yyoi _d d Yxoi dll’xoi _
ET =[=—(EI —_—=) -~ P 1 = 0
\4 2 dx W 2 x dx
x dx _ x dx x=h_+4%
x—hx+2X X ’x



The quantities Aixi(i=l,2,———) are the associated eigenvalues.

it

Similar eigenvalue problems can be defined for ¢xoi’ xei

wxei’ S SRS wyoi’ and wyei' The solution of the eigen-
value problem defined by Egs.(68) and (69) is discussed in
Ref. 17 (see Sec. 10-4).

The axial rods are not subject to axial forces, so that
a typical eigenvalue problem, say for I is defined by the
differential equation

42 ace

— (EI
d22 Y, dz

=A . p_ ¢_ . ,1=1,2, -—- (70)

which must be satisfied over the domain hz < z < hz + zz,
where the function LI is subject to boundary conditions of
the form (69) with P.= 0. Similar eigenvalue problems can

be defined for ¢zei' v_ ., and wzei' If the rod is uniform,

zoi
the solution of the eigenvalue problem can be taken directly
from Ref. 17 (Sec. 5-10).

For uniform or nonuniform rods the solution of the eigen-
value problem (68) can be obtained by one of the approximate
methods described in Ref. 17 (Ch. 6), and the same can be
said about the eigenvalue problem (70) if the rod is nonuniform.
In the sequel we shall regard all the eigenfunctions and assoc-
iated eigenvalues as known.

The eigenfunctions possess the orthogonality property.

Moreover, they can be normalized, so that

bl




poxwx01( )wXOJ(X) dx = 2‘sij
X

/ pxwxel( x) ¥ xej(x) dx = 261j 1,3 =1,2, - (71)
Dy

f ox¢x01(x)w (x) dx = 0

Dy
where Gij is the Kronecker delta. Similar expressions can be
written for the remaining eigenfunctions.

In view of the above, a typical term in expression (65)

becomes
f 82 azwx 5 Bw f ;x
w [ (EI ) 2 (P.—2)] dx = ( Vo .
p X 8x2 wX 8x2 X X 9X D ji=1] Xoi'xoi
X X
e o) 2
x X 2 d%y. .
+ 1 Vyei¥xei) X1 ) Weoi L dZ(EI xg )- %n(Px gg )1
i=1 1 dx dx
e 2
X 2 da%y dy
+ ) w 4 (1 xely -4 (p —220)1 } ax
L xei 2 2 dx x dx
j=1 dx X dx
Ox ex
=2 Z éxi §01 + Z ixi iei) (72)
i=1 i=1

Hence, the potential energy V can be regarded as a function

EL -

of the generalized coordinates oni' Vxei’ oni’ etc. It foll-

ows that K4| » Eq.(61), is a quadratic form in the 2(1 + O,
E

+ e, + oy + ——— 4 ez) variables 81’92’Wyoi’wyei’ -==, TFor

stability, K4| must be positive definite in these variables.
E
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Furthermore, by using even and odd modes to represent the ela-
stic displacements no coupling between even and odd modes

.occurs. Hence, K4| may be represented as the sum of two qua-
E
dratic forms K4olE and Kge E, where Kge . involves only even
modes and K4o| involves odd modes and the rigid body motion.
E

Therefore, we have
+ K (73)

where
e

X
) [(Aixi
=1

- Qz)v2 .+ A2 .W2 .
S Xel wX1l Xel

sy 7 ]

e

Y
Tl o,
i=1 Y

2 2

W L]
wyi yeil

- 92)W2 .+ A
s’ yeil

2,..2 2 2,..2
T 9V * (Auzi pRR Ly (74a)

1

and

_1 2.C v 2 C o2
K4OE—EQS[-§(CB)61+X(CA)62

o
4

o
( Zy Jwyiwyoi + igl Jvzivéoi)
i=1

+
[~
@

Wl

o
O

X Z

)]

W .+ ) J__.U_ .
wX1l XO1 i=1 uz1l zZo1i

o
o

2 2
1 jz (waiaij TE % waiwaj)oninoj
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y y .
+ z X ( 3 i°i3 *F % Qi Jw iJw )W oiW 0]
i=1 j=1 y J Y Yl 'y yoJj
o o
2 2 2 2
+ Z .Z [(Au21 " Qs)éij * R Qs JuziJuzj]Uzinzoj
i=1 j=1
°z 9%
+ ) Z[(A2 -edes,. + 2020 g V..V .
L = vzi 1] B s "vzi vzj® zoi zoj
i=1l j=1
o, ©, o o,
4 2 4_2
+=05 ¥y JJg. _.J W .U .+=0% V YJ I W _.V_ .
ATs Ly j=p wxi uzj xoi“zoj B's .-, 5=1 wyl vzj yoi zoj
O oy
+ ) (12 .-a®)v? .+ ) (2 . -o%yw? . (74b)
L vxi "s’ "xoi L uyi “s’“yoi
i=1 =1
in which
h_+2 h_+2
x ’x X °'x
= . d =
Juxi Ihpxx¢x01 oo Juxi fhpxxwxoi dx
X X
h +2 h +2
Yy % a y
Juyj_ - f pyy yoi Y, dg i~ f pyywyoi dy (75)
h Wy h
Yy b4
h_+2 h_+2
z 'z 4 z 'z
= ' zZ =
Juzi fhpzz¢201 v Iyzi fhpzzwzoi dz
z z

We recall that K4| must be positive definite for the equili-
E

brium point to be asymptotically stable. Since Eq. (73) K4|

E
can be written as the sum of two parts, « and « | , it

40 E 4e E
follows that for K4| to be positive definite it is necessary
E

that both «

and Ko be positive definite.

40

e B

Ly



The expressions for Kge and 46 can be written in the

E E
general form
1 N o
K4o|E = i.izl j21 o3 9i Yo7
n_ n (76)
1 & e
K4e|E -2 izl 521 %eij Yei 9ej

where ) and q.; are generalized coordinates and ng and n,
are integers denoting the number of coordinates dei and do4
considered. The integers ng and ng depend on the number of
modes assumed and, hence, on the integers €yr €, €., Oy Oy

y 4 X Yy

o, The quantities aeij and aoij represent constant coeffic~

ients. According to Sylvester's criterion K40 and 4o are

E , E
positive definite if the conditions

|uoij| >0 , ‘aeijl >0 i,j=1,2,---,k;k=1,2,---,n (77)

are satisfied, where la and laeijl are the principal minor

oijl
determinants associated with matrices [ao] and [ue] of the co-
efficients. Matrices [ao] and [ae] are referred to as Hessian
matrices.

Using Eq. (74a), we may write the Hessian matrix [ae] in

the diagonal form

[a ] = lagd (78)

where the order of the matrix is

n, = 2eX + 2ey + 2ez (79)
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For a diagonal matrix conditions (77) merely imply that each

diagonal element must be positive. Hence, e is positive

E
definite if
a; >0 i=1, ---, n (80)
where the constants a; are defined by
2 2 C 4
Avxi_Qs 1=1, 1€y
A2 j=i~-e_ ; i=l+e_,---,2e
wxj J x ! x' M ¢
2 2 .. .
A —Q7 j=i-2e_ ; i=l+2e_,-—-,2e_-+te
uyj s b'¢ b'e b'e
a; = (81)
2 . sl L
Awyj j=i 2ex ey,1—l+2ex+ey, ,2ex+2e
2 .—92 j=i-2e_-2e_;i=1l+2e_+2e_,~---,2e_+2e_+e
uzj s bi4 el X v’ A Yy 2
A2 .—92 j=1-2e_-2e_-e_;i=l+2e_+2e_+e ,~---,n
vzjy s b4 y z' X y ~z' e

Considering the above definitions we see that the conditions

given in (80) are met if

2 2
Avxi > Qs (82a)
i=1, ---, e,
22 s 0 (82b)
wxi
2 2
Auyi > S (82c)
i=1, ---, e
5 b
Awyi > 0 (824)
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Auzi > Qs (82e)
i=1, ---, e,

a2 s g2 (82f)

VvZ1 S

By inspection it is obvious that inequalities (82b) and (824)

are met. Furthermore, we recall that A A A and Au

vxl’ “vzl’ “uzl

vl
are the lowest natural frequencies associated with these vi-

brations, so that inequalities (82) are satisfied if
A > Q , A > Q (83a)

A > Q ;A > Q (83b)

where Avxl and Auyl are defined by eigenvalue problems similar
to those given by (68) and (69), whereas A,y @and A, are de-
fined by eigenvalue problems similar to those given by (70) and
(69). Considering Eqg.(68), it is possible to show that condi-
tions (83a) are always met (see Appendix A). Hence, the test-

ing function « is positive definite if cornditions (83b)

4e|E

are satisfied.

We shall now consider the function Kao and note that it
E

can be written as the sum of four independent gquadratic forms

K K + « + K + k (84)
4o|E 401|E s02| 403| s04|
where
Ox
_ 2 2,2
K4ol|E lzl(Avxi Qs)vxoi (85a)
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o
Yy 2 2,2
K402| = Z (Auyl_Qs)Wyoi (85b)
E .
i=1
oY
_ 1 .2cC, . 2 C
“403| = 7 9glp(C-BIOY + 40y 5 (] I 5 Woos
E i=1
°, oy oy
+ Z Jvzinoi)]+ z Z (Ai i°i37F % Qi Jw iJ s oiW 0oj
i=1 i=1 j=1 Y J yi wyj 'y yoj
o, o,
2 2 2 .2
+ .Z .Z [(szi_gs)sij ) Qs JvziJvzj]Vzoivzoj
i=1 j=1
Oy (o]
4 -2
+=05 )y 7 T . . . : (85c)
B s i=1 j=1 wyl vzj yol zoj
°x
1 2.C 2 C
“g04| = 7 Oslx (C-R)Oy - 40, X () Tous Weos
E i=1
o o o
z , x 2 2 .2
* izlJuinzoi)]+ igl ng(wai ij TR % waiwaj)oninoj
©°z 93
2 2 2 .2
+ .Z .Z [(Auzi_Qs)éij *a Qs JuziJuzj]Uzinzoj
i=1 j=1
o o
4 2
+ =5 7 ] . . W, .U (854)
A s i=1 321 WXl "uzj xo0l “zoj

By inspection, we see that K401|E and K402 - are positive de-

finite if Avxl > QS and Auyl

this is always true, so that a0

L8

> .
S

e

As discussed previously,

is positive definite if




K403 - and K404 : are both positive definite.

Let us consider first the function Ka0a] For conveni-
E

ence, we define the following substitutions

CQS
n.=- 96, —=>= (86a)
0 2 (2A)l/2
1/2 C N
Uzoi(z/A) 8594z i=1, 19
n,: = (86b)
oy LoemY?ag o 5=i-o
X07j s wX]j z
i=l+o_,---,0_+0
z X 2z
In terms of these new variables, K4O4l can be written as
E
o +o_ o_+o
RN (87)
K = + b.§.,.)n.n. 87
4o4|E izo 320 iij’ 1]
where
- -2
by = - ¢ (88a)
2 2
A(A_./9. - 1)
uz; S i=1, ---, o, (88b)
2 Juzi
b_ =
1 2 .
A(waj/Qs) j=1-o0,
2 J2 . i= 1+o0_,---,0_+0
wxj Z X z
Hence, the Hessian matrix associated with K404 is given by
E
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where i takes values from 0 to o, *+ o, Denoting the principal
minor determinants of ER4O4]E by Ai(l = 0,~-——, ox+oz) the stab-

ility conditions are

A, > O i=20,1,---,0_+0 (90)
i X 2z
where
_ 1
AO—bO(l+B—)-
0
1 1
Al bobl(l + 5 + E_) (91)
0 1
A P b+ ¥ op7h 0
= . + . p=0,---,0_+0
P 1i=0 1 i=o 1 X 2z

Considering Egs. (88) and inequalities (83b), we see that if

Kpe . is positive definite, then the bi(l = 1,-=-, ox+oz) are

all positive and b0 is negative. Under these circumstances

the requirements Ai > 0, (i = O,l,———,ox+oz) can be written as
P
2‘ E_ +1 <0, P = 0,-———, OX+OZ (92)
i=0 ~i

In terms of the system parameters (92) yields the following

stability criteria

C > A (93a)
2
A 2 2 J
( gxl) 5 . wx1l (93b)
s x -2 2
C-a-2 izz wai/(wai/Qs)
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2
2 J
“uzl > 1 4 uzl
g 922 2 2 Ox.2
C_A_zizzJuzi/(Auzi/Qs_l)_zizlexi/(wai/ﬂs)

2

(93c)
Following a procedure similar to that used above, the require-

ments for K403 to be positive definite are
E

C > B (94a)
2
(Ag 1)2 X _ 2 JWyl (94D)
s c--2 Y32 /(. ./9.)°
j2o Wyl wyl’ 7s
2
A 2 23
( vzl) s 1 + vzl
g 922 2 2 9% 2 2
C-B-2 V23 _./(A%_./9%-1)-2 J¥3% /(A ./9)
jop V21 vzi’ s jop Wyl wyl’ s

(94c)

Recalling Eq.(73), we see that kﬁIE is positive definite
if conditions (83b), (93) and (94) are satisfied. However,
we notice that conditions (83b) are contained in (93c) and
(94c), so that Egs.(93) and (94) present a complete stability
picture. It should be noted, that while in general conditions
(93) and (94) apply to a satellite with three pairs of symmetric
flexible rods, they can also be applied to a satellite contain-
ing any smaller number of symmetric pairs of these rods. To
this end, we note from Egs.(75) that if the length of any pair
of rods becomes zero the corresponding J y——=—, OY Jv

. J . .
vxi’ “wxi zi

becomes zero and the series representing that particular pair
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of rods is identically zero. Finally, it should be noted that
inequalities (93) and (94) have identical forms, so that in the
stability criteria established considering inequalities (93)

r A ., J__, and

we can substitute for the parameters A, A
u wxi uzi

z1i

J _. the parameters B, A

wxi !

. J__. and J _ . to obtain
vzi wyi

Aoy
wyi vzi
stability criteria corresponding to inequalities (94). In the
sequal we shall be concerned only with inequalities (93) and
results obtained using these inequalities will be applied to
inequalities (94) using the substitutions defined above.

A check as to whether inequalities (93) are satisfied

will be performed numerically. For convenience, we shall write

inequalities (93b) and (93c) in the slightly different form

1/2
ox 2 2
q (c—A)/AO-z_Z (Toxi/Bo) /(A /%g)
s i=2
) < 5 (95a)
wxl 2 wal/AO
- 2 -1/2
Q 2 J /A
s uzl” 0
<11 + (95b)
T___"
Auzl L C A)/AO R
in which (C-A)/A0 = CO/A0 -1+ RAX - RAZ and the parameter R
is given by
o, Oy 2
R=27 32 ./a) /0% /0% - 1)+ 2§ 32../a) /A _./0.)  (96)
= uzi’ o uzi’ s = wxi’ 0 wxi’ Vs

where Co and AO represent moments of inertia of the rigid part

of the satellite about the axes z and x, respectively. The
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h_+2 h_+2
X X z Z
2 2 2 2
R = — = —_—
ax = 5= [ ex dx , Ry, = 5= [0 2" dz (97)
0 0
h h
X V4

At this point, a few comments about the nature of the stability
criteria resulting from inequalities (93a) and (95) are in or-
der. We note from (93a) that for stability spin should be
imparted about the axis of maximum moment of inertia. Inequal-
ities (95) indicate that the frequency ratios QS/AWXl and
QS/Auzl are determined by the system parameters and, in partic-

ular, that QS/Au must not merely be less than unity as pre-

zl
dicted by (83b) but its value must be according to (95b).

b. Numerical solution

If we let the thin elastic rods be uniform, the solution

of Eq.(70), subject to boundary conditions (69) is

[sinBizz-sinhBizz][sinBi(z—hz)—sinhBi(z—hz)]

bny T
zoi (o & )1/2

sinf. % _sinhg.
2z i7"z i“z

[cosBikz+coshBin][cosBi(z-hz)—coshsi(z—hz)]
(p )l/2

+ (98)

sinp.% sinhB.%
Z 2Z 1 2 1 Z

2

in which (B.% )4 = AT .
iz uzi

pzlz/Equr where Bizz is determined by

cossizzcoshsizz = -1 (99)
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Introducing Eg. (98) into Egs.(75), we obtain

h +2
z 'z , 1/2
Juzi = f pzz¢zoi dz = (mzzz) Szi (100)
hz
where
s - ﬁ[(hz/zz)sizz(smeizz-smhsizz)—(coseizz+coshsizz)]
zi 2 . .
(Bizz) 51n8i2251nh6i22
(101)
and
2
R __ST.
2 . _AZ zi . e
Juzi/AO = —-?;—— i=1, » O, (102)
where
_ 2
T, = [(hz/lz) + (hz/zz) + 1/3] (103)
We also note that the frequency ratios (Auzi/Qs)z, (i=2,—-—,oz)
are given by
2 4 2
(A,g37/%g) " = (sizz/slzz) (A, z178) (104)

The terms involving the z rods in inequality (95b) are deter-
mined by using Egs. (102) and (103).

The eigenvalue problem defined by Eg.(68) and subject to
boundary conditions (69) must be solved using an approximate
technique. We shall seek to set up the eigenvalue problem by
means of Galerkin's method (see Ref. 17, Sec. 6.6). To this

end, we assume a solution in the form of the series

5k



(105)

where a; are constant coefficients to be determined and Vyoi

are comparison functions. We choose as comparison functions
for the rotating rod the eigenfunctions of the cantilever rod
obtained by setting QS = 0. We note that these eigenfunctions

are given by Eq. (98) if ¢zoi’ 27, z and p, are replaced by

(1 £, x and Pyt Using Galerkin's method we obtain an al-

xoi’ "x
. . o . n
gebraic eigenvalue problem defining n eigenvalues wai and

(1),

the associated eigenvectors {a

ita®y = ™2 o mia®)) (106)

where kij are obtained from

h_+2 N N
xR dzlpxoi d2"bxoj
ki = ky; = ] EL_, > 5—= dx
h dx dx
X
hx+£x - .
2 dy. . Ay .
+inm o2m+en?) - —X X0l __XOJ 4x
4 "x Y"s'x "x 2 dx dx
h (hx+£x)
X
h_+2 R
* 2 dy. . dy
= (2 1 2 2 _ x~ . 'xX0i “*x0j
- (wai)NRdij 4meS(hx+2x) / [1 27 dx O - &
h (h_+2_)
% x X
(107)

in which (A represents the frequency for a nonrotating

wxi)NR
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rod whose rotating natural freguency is wai' The coefficients

mij are obtained from
h_+2
X 'x
mig = My = Lo beoityog OX = 845 (108)
h
X
The solution of Eq. (106) yields the coefficients agl)(i,j=1,——— n)
and the corresponding frequencies nAéxi' Recalling Egs. (75),
and using Eq. (105), the functions Joxi are given by
hX+JLX
v o
Juxi = / P x* j;laj Yxo3 dx
h
X (109)
1/2 n . 1/2
= (m 12) ) all) g o (m 22) S_ .
X X 521 3 Xj X"x xi

where

/E[(hx/lx)lex(SIHBigx_Slnhsjgx)_(CosBj2x+COSth?x)]

Xj 2 . .
(Bjkx) 51n8j2x51nhsj2x
{110)
and
2
R__.S7.
2 _ AX"™xi
wai/AO - T (111)
X
in which
_ 2
T, = [(h /2 )" + (hx/zx) + 1/31 (112)

Equation (111) together with the solution of Eqg. (106) permits
the evaluation of the terms in inequalities (95) associated

with the elastic displacement W -
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At this point, a brief description of the numerical scheme

appears in order. The values of Qs/Auzl’ RAZ' hz/zz, zx/zz,

hx/hz£ px/pz, Ewa/Equ and CO/A0 are fed into a computer pro-
gram. The program inserts these values, together with those
of sizz obtained by solving (99), into Egs. (100) through (103)

to evaluate J2 .
uz

l/AO. Equations (107) and (108) are then used

to define the eigenvalue problem (106). The eigenvalue pro-

blem is solved using IBM subroutines EIGEN and NROOT yielding

the frequency ratios (wai/ﬂs)2 and the constants a(l)j. Using
Egs. (109) through (111) the values of Jixi/Ao are also deter-

. , 2 2 2
mined. With the values of Juzi/AO' wai/AO’ (wai/Qs) and
2

thus computed, the satisfaction of inequalities (95)

(Auzi/ﬁs)
can be checked. Results of these computations are presented

later.

Method of Integral Coordinates

The stability analysis of the previous section has the
disadvantage of leading to an involved numerical procedure.
The effects of changes in various system parameters are not
easily assessed. Moreover, in using the normal mode approach,
the question as to the effect of series truncation on the accu-
racy of the results remains unanswered. For these reasons we
shall seek closed-form stability criteria. We recall from
Eg.(56) that for asymptotic stability the functional K3

E

must be positive definite, where K3 is given by
E
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_1,.2:Cinnva? 4 Croayp? - o C
K3IE slajlg(c-B)ey + xl(C Aoy = 2 F 0,1 ijxxdex
X
+ [ p_zu_dz) + 2 o (foyw dy + [ p_zv dz) + i([ xw_dx
P z°Y2 B 1 p Y Y Dpz b4 A Dpx x
z y z X
2 1 2 2 2,.2
+ poZzuzdz) + E(poyywydy + pozzvzdz) 1+ poX(Avxl—Qs)vxdx
z Y z X
2 2 22 12 2
+ f pXA <1Yx dx + [ py uyl_Q )u dy + f py wyl ydy
X Y Y
2 2, .2 2 2, 2
+ poz(Auzl—QS)uzdz + poZ(szl-Qs)vzdz} (113)
z z

Again we note that Eg. (113) is both a function and a functional
and it may not be possible to determine its sign definiteness

by standard technigues. However, by defining suitable new co-
ordinates and using Schwarz's inequality for functions, it may
be possible to circumvent this problem. To this end, we define

the following integral coordinates

v (t) = poXxvx(x,t)dx ;W (t) = poXxwX(x,t)dx
x X
u (t) = t)dy , w_(t) = ,t)d 4
uy( ) fDoyyuy(y, ) dy WY( ) poyyWy(y )dy (114)
y Y
u, (t) = pozzuz(z,t)dz , v, (t) = pozzvz(z,t)dz
z z
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Using Schwarz's inequality, we have

2 2 2

(f pxv dx)® < [ o x"ax [ o v, dx (115)

D X X - D X D X X
X X X

Recalling the definition of V%, and solving for f vai dx,

D
inequality (115) yields X
7 2
[ o v2 ax > & (116)
D 0 AX
X
Similarly
f 2 sz f 2 V—VZZ
p W_ dx > P o.w. dy >
p X X AoRax ~ "D Y Y BoRpy
X y
f 2 l_1y2 f 2 Ez2
p.u_ dy > ’ p_u_ dz > (117)
pY¥Y BoRpy p % *% AoRaz
y z
5 2
2 z
[ o vi dz >
D 2% BoRpy
z
where the ratios RBY and RBZ are given by
1 2 1 2
R.,=2= [py dy , Ry, =5 [p,2" dz (118)
BY ~ B, Dyy BZ B DZz

and B0 denotes the mass moment of inertia of the rigid part

of the satellite about the y axis. Inserting Egs.(l117) into
Eg. (113), noting that Avxl > Qg and Auyl > QS, and if, in
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addition, we assume Auzl > Qs and szl > Qs(whlch will later

be shown to be the case), then we can define a new testing

function Ksl given by

E
_1,.2.¢C 2  Cimara2 _ 5 C = . =
Cc ,— - 1 ,— 2 1 2
+2§(wy+vz)+i(wx+uz) +§(w +vz)]
2 2 2 2 2
(Avxl_Qs) - 2 wal — 2 (Auzl—Qs) - 2
AR V'« TErR oY% tTER u
0°AX 0"AX 0"BY y
2 2 2 2 2
A (AZ_.-29) (AD_4-90) _
syl g2, _uzl s T £ S (119)
o°BY Y 0 AZ 0°BZ
where
K < K (120)
5|5 3l
Hence, if K is positive definite the equilibrium point is
E

asymptotically stable. We note that K5| can be written as
E
the sum of three guadratic forms, each of which must be posi-

tive definite. Denoting these forms by KSIIE, K52|E, K53|E

and their associated Hessian matrices by [t.,1 , [#.,]1 ,
51 E 52 E

[# respectively, we obtain

1.
53 E



(02 -0?) ]
vxl s 0
A R
.1 == O B% 2 2 (121a)
51, 2 (Auyl ag)
0 B R
i 0" BY
[C(Cc-Rn) ~C -C 7]
Qi A2wxlA
M_.] === -c ——"——+1 1 (121b)
52,  72A 2°a w
s 0"AX 2
A
—C 1 (2L - nph—+ 1
8 i 0 AZ |
[c(c-B) c c T
Qi 72 N
M..] = == c - 4 1 (121e)
53°. ~ 2B 225 &
s 0"BY
A\2721 B
C 1 (2—1)BR + 1
i Qg 0" BZ J

An application of Sylvester's criterion to matrices (121),

vields the following stability criteria

2 2 2 2

Avxl > Qs R Auyl > Qs (122a)
cC > A

( wxl)2 AORAX

g c-4A (122b)

2

uzl (wal/Qs) AORAZ

(=) > 1+ 5
S (C_A)(wal/gs) - AORAX
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and

c>B
(A 1)2 , BoPey
g ¢c-B (122¢)
2
vzl 1. (Av1/9s)" BoRpy
) )
s (C-B) (A1 /2% - BoRyy

respectively. From our previous discussion we conclude that
inequalities (122a) are always satisfied. Furthermore, we note
that inequalities (122b) and (122c) possess identical forms.

In view of that, we shall establish stability criteria using
inequalities (122b) and replace the parameters A, AO’ RAX’

RAZ’ wal/gs and Auzl/Qs by B, B0’ RBY’ RBZ’ Awyl/Qs and
szl/QS respectively, to derive criteria valid for (122c). For
convenience, inequalities (122b) are written in the slightly

different form

C > A (123a)
B 1/2

Q C./A, + R _-1-R
- S_ . 00 RAX AZ (123b)
wxl i AX
Qs [ RAZ /2
T < 1 + > (123c)
uzl CO/A0 - RAZ -1 + RAX(l - Qs/wal)

Three major conclusions can be drawn from inequalities (123):
(a) For spin stabilization the spinning motion should be im-
parted about the axis of maximum moment of inertia.

(b) Spin stabilization is possible if the spin ratios QS/Awxl
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and Qs/Auzl satisfy inequalities (123b) and (123c¢c), which involve
the system parameters R, ., RAZ and CO/AO. In addition, the fre-
quency ratio QS/Auzl should not exceed unity.

(c) A satellite which is stable without radial rods remains
stable if radial rods are added.

To verify the last statement, we recall that Aw repre-

x1
sents the first natural frequency of the out-of-plane vibration
of a rotating rod and it must be greater than Qs’ so that

Q_/A

&/ Mx1 < 1. In addition, for a satellite with no radial rods,

we find from inequality (123a), that for stability we should
have CO/A0 > 1 + RAZ' Using these results, we see that inequa-
lity (123b) yields a less stringent criterion as the right side
of (123b) is always greater than unity. Moreover, for any val-
ue of Rax other than zero, inequality (123c) is less restrictive
than the same inequality with Ray = 0.

We note that, by contrast with inequalities (95), the eval-
unation of criteria (123) requires much less numerical work. In
particular, for inequalities (95) we must obtain a complete sol-
ution of the eigenvalue problem (106) consisting of the n fre-
quencies nwai and eigenvectors {a(i)}, whereas inequalities

(123) require only the first natural frequency wal of the ro-

tating rod.

" Numerical Results

The general solution of the stability problem of a rigid

satellite with three (or less) pairs of uniform rods has been
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programmed for digital computation, and a numerical solution
obtained on an IBM 360 computer. Results are presented for

the criteria developed using both modal analysis and integral
coordinates. For the numerical study it is assumed that rods

x and z have equal mass and stiffness properties, and, in addi-
tion, the rigid body dimensions hx and h_ are equal (see later
statement concerning rods y). The above restrictions are placed
only on the numerical solution to facilitate the presentation
of data; there are no such restrictions placed on either the
problem formulation or computer program. In the figures pre-
sented, the results obtained using modal analysis are repre-
sented by the dashed lines and those obtained using integral
coordinates by solid lines. Figure 3 shows the value of the

)

ratio QS/(A vs Qs/wal’ where (A is the first nat-

NR wxl)NR

ural freguency of the nonrotating rod, obtained by setting

wxl

QS = 0. The first natural frequency of the rotating rod is de-

noted by A The quantity HX = hx/zX plays the role of a

wxl"®

parameter. This figure enables us to make use of the parameter
plots of Fig. 4 without having to solve the eigenvalue problem
for the rotating rods, where Fig. 4 shows the spin ratio QS/

wal required for stability as a function of (CO/AO) - RAZ’

with RAX as a parameter. The region below the appropriate

curve is stable. The curve shows that for (CO/AO) - RAZ =1

the allowable spin ratio is equal to unity, and for (CO/AO)
= Ry, > 1l no instability exists. We note in Fig. 3 that the

ratio Qs/wal is always less than unity. The extent to which
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Qs/wal is less than unity depends on the parameter HX, in the

sense that if HX increases the ratio Qs/wal decreases.

Hence, in Fig. 4 all values of QS/A greater than unity are

wxl

said to be dynamically impossible. However, the dynamically

impossible region may include values of QS/A considerably

wxl
less than unity as shown in Fig. 3. It is reiterated again that

Figs. 3 and 4 are to be used together. Namely, starting with

a value of Qs/(A ) Fig. 3 gives Qs/wal' which is then used

NR’
in Fig. 4. It should be noted that Figs. 3 and 4 present a

wxl

complete stability analysis for a satellite which radial rods
alone. Figures 5 through 8 show the allowable spin ratio QS/

A for stability as a function of RAZ’ with the length ratio

uzl
EX/QZ as a parameter. The region below the appropriate curve
is stable. These curves show that the allowable spin ratio

QS/A must be lower than unity; the extent to which it must

uzl
be lower than unity depends on the system parameters. It should
be noted from Figs. 6 through 8 that the most restrictive region
of stability is associated with the parameter zx/xz = 0, namely
the case in which there are no radial rods. As noted earlier,
any stable satellite possessing axial rods alone will remain
stable with the addition of radial rods. Indeed the addition

of radial rods increases the region of stability significantly
and for length ratios xx/zz > 10 the allowable spin ratio

is very near unity. Figure 9 shows the effect of changing

the rigid body inertia ratio C0 / AO on the allowable spin

ratio for a fixed value of the length ratio xx/zz. Again the
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region below the appropriate curve is stable. As expected, an
increase in CO/A0 increases the stable region. Figure 10 shows
the effect of changes in the parameter HZ, where HZ = hz/zz.
Again the region below the appropriate curve is stable. Figure
10 also shows that increasing HZ yields a slight increase in
the stability region. Figures 5 through 10 represent criteria
determined by inequalities (95) and (123c) and are due to the
addition of z rods.

For comparison purposes, a problem which can be considered
as a special case of the present one, in the sense that it con-
siders only spin axis rods, has been considered; this is the
problem investigated in Ref. 16. Inequality (123c) for the

case where R equals zero yields the appropriate stability cri-

AX
teria. Results using this criteria as well as results from Ref.

16 are presented in Fig. 11l. The results of Ref. 16 working
with density functions are more restrictive than those of the
present investigation.

It should be noted that diagrams identical in every re-
spect to Figs. 3 through 11 but with szl’ Awyl’ BO’ Royo RBZ
and zy replacing Auzl’ wal' AO, RAX’ RAZ and Lo respectively,

can be obtained from inequalities (100) and (128c).

Summary and Conclusions

The mathematical formulation associated with the problem
of the stability of motion of a satellite consisting of a main

rigid body and three (or less) pairs of flexible rods has been
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completed. The rods are capable of flexure in two orthogonal
directions. Whereas the rotational motion of the body is des-
cribed by generalized coordinates depending on time alone, the
elastic displacements of the rods depend both on spatial posi-
tion and time. Because of the elastic motion of the rods, the
center of mass of the body is shifting'continuously relative
to the main rigid body. These displacements, however, do not
add degrees of freedom since they can be expressed in terms of
integrals involving the elastic displacements. Assuming no
external torques, there exist motion integrals in the form of
momentum integrals. These integrals can be regarded as con-
straint equations relating the system velocities.

The Liapunov direct method has been chosen for the stabi-
lity analysis because it is likely to yield results which can
be interpreted more readily than those obtained by a purely
numerical integration of the equations of motion. Since the
elastic vibrations result in energy dissipation, it is shown
that the equilibrium position is asymptotically stable if the
Hamiltonian is positive definite and unstable if it can take
negative values in the neighborhood of the equilibrium. De-
termining the sign definiteness of the Hamiltonian is compli-
cated by the fact that the Hamiltonian contains spatial de-
rivatives of the elastic displacements. Two methods have been
presented to deal with this problem. The first, the standard
modal analysis in conjunction with series truncation, develops

criteria which are expressed in terms infinite series
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associated with the natural modes and frequencies of the elas-
tic rods. The second, the method integral coordinates

yields closed-form stability criteria involving the system para-
meters such as the body moments of inertia, the length and mass
distribution of the rods, the lowest natural frequencies of the
rods, and the satellite spin velocity. The advantage of the
method of integral coordinates is illustrated by the relative
ease with which closed-form stability criteria are developed
and by the amount of information which can be extracted from
their ready physical interpretation. In particular, the anal-
ysis shows that, for stability, the spinning motion is to be
imparted about the axis of maximum moment of inertia and that

the allowable spin ratios QS/A QS/A QS/Auzl and Qs/

wxl'’ wyl’

A are determined by the system parameters. The first is

vzl
recognized as the "greatest moment of inertia" criterion.
Moreover, the spin ratios QS/Auzl and QS/AVzl should not be
merely lower than unity (as they should be in the case of simple
harmonic excitation of the rods to prevent reasonance), but

they are further restricted by the system parameters. It is

also shown that a stable spinning satellite which does not con-

tain radial rods will remain stable if radial rods are added.

AEEendix A

The out-of-plane vibration of a rotating fixed-free rod,
attached to a hub of radius hx’ is subject to an axial centri-

fugal force and its eigenvalue problem is defined by the diff-
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erential equation (68) and the associated boundary conditions
(69). The first natural frequency for such a rod is always
greater than the rate of rotation Qg+ This can be shown to be
true for a rod of arbitrary mass and stiffness distribution.

To prove this statement we recall Rayleigh's quotient

f6 L1¢] dD
_ D
R(¢) = 7_Eﬁﬂ]ﬁ_?ﬁy (A1)

D

where, for the problem at hand, the operators X and M are given

by
2 2
_d d -4 a
4I = 5;7 [EIVX(X) 5;7] ax [PX(X) dX]
(a2)
M = pX(X)

The domain of extension of the rod is D : hX <X < hx + zx and

the centrifugal force Px(x) has the expression

h +2
5 X X
P (x) = a_ [ e (8)g dg (A3)
b3
From the properties of Rayleigh's quotient, we recall that

2

vxl (nd)

R(¢) > A

where AVXl represents the first natural frequency of vibration
associated with Vo and ¢ reprejents any comparison function.
Furthermore, the equality sign in (A4) holds only if ¢ re-

presents the eigenfunction asso?iated with the first natural

frequency. Letting ¢, represent the eigenfunction associated
1 g
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With-Aixl’ integrating by parts, and considering conditions

(69), Eq.(Al) yields

hx+£X d2¢l 2 hx+£x d¢1 2
EI_, (x) ( ———;) ax + [ P (x) (3z=) ax
2 hx- dx hX
Avxl = h_+2 (A5)
X X

2
[ e (x)¢7] dx

h
X

We note that Eq. (A5) can be written as

2 Vgr(4p)  Vplep)

Aox1 = T(¢,) * T(¢,)

(26)

where VEI(¢1) represents the potential energy due to bending,
VP(¢1) the potential energy due to the axial centrifugal force
and T(¢l) a reference kinetic energy (see Ref. 17, Sec. 6.4).
Hence, Rayleigh's quotient can be expressed as the sum of two
independent terms, one representing the bending energy, and
the other corresponding to the energy associated with the cen-
trifugal force.

Due to the above result, we consider two problems related
to the problem above. The first, a nonrotating fixed-free rod
with mass and stiffness distribution identical to that of the
rotating rod and the second, a rotating fixed-free string with
mass density identical to that of the rotating rod but with
zero flexural stiffness. Both problems are defined over the

domain D. Writing Rayleigh's quotient for each of these prob-
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lems we obtain

Voo (4)
EI 2
Re(0) = 7y 2 M
(a7)
vp(8)
Rg(8) = =1y 2 %a1

where the subscripts r and s refer to the nonrotating rod and
the rotating string, respectively. Using as a comparison func-

tion the eigenfunction $q inequalities (A7) take the form

Vpr (4) 12
Ti¢15 rl
(A8)
Vplty) o
TZ¢15 sl
and recalling Eq. (A6), we obtain#®
2 2 2
Avxl g Arl + Asl (A9)

Inequality (A9) indicates that the square of the first natural
frequency of the rotating rod is always greater than the sum
of the squares of the first natural frequencies of the nonro-
tating rod and the rotating string, respectively.

Let us give further consideration to the first natural

frequency of the string, Asl’

* This result is due to a Theorem by Southwell. See Ref. 18.
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The differential equation for the string is given by

-4 p(x) j‘-lzzl = (x) 22 v (A10)
dx " x ax ' T fx sl "x
where Eq. (Al0) is subject to the boundary conditions
dvx(x)
v.(h)=0 , P (X)) —r- =0 (All)
X x X dx thx+£x

For comparison purposes, let us define the eigenvalue problem
for a string of length hx + zx rotating about the point x = 0
with angular rate Q,. The mass distribution for the string is

given by
Py (X) = (a12)
Denoting the transverse displacement of the string by Gx’ the

associated differential equation is

a av, 0 . 2 -
- 3= [Px(x) __EE——] = pX(X) L) vx(x) (A13)

where Eq. (Al3) is subject to the boundary conditions

R dGX(X)
v (0) =0 ; P_(x) ——— = 0 (p14)
* X 4% {x=h_+1
X X
hx+ !LX
Recalling that Px(x) = Qi f px(g)g d¢, it is not difficult to
X

show that Eq. (Al3) subject to conditions (Al4) admits a sol-

ution of the form
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Gx(x) = x/(h_+2 ) (A15)

corresponding to the frequency

22, = e (AL6)
From Egs. (Al5) and (al6), we conclude that a string rotating
about an axis through its fixed end has a rigid body mode and
a corresponding first natural frequency equal to the spin rate
Q5. We wish to show that the first natural frequency of a ro-
tating string fixed to a hub of radius hx must always exceed
Qg- To this end, we consider Rayleigh's quotient for Eq. (Al3).
Using Eq. (Al6), we obtain

N \ArP(¢)

Rs(cp) =

= > 92 (A17)
T ()
Consider as an admissible function*¢ in Eg. (Al7) the following

function

¢ = (A18)
®s1 by 2% < By + 2y
where ¢5q represents the first eigenfunction for Egq. (Al0)

subject to conditions (All). From Egq. (Al7) we obtain

* See Reference 19, Chapter VI, Sec. 7.1.
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hx+2X | 5

f Px(x)(%% dx
- 0 2
Rs(¢) = Th ¢ 7 Qs (A19)
X. X
[ e (x) 2 ax
0

However, using the definition of ¢ given in Eq. (Al8), we find

h_+2

X ’x d¢sl 2
[ P (x) () ax
R (¢) = Px = 72 (A20)
glo) = hx+2x T Usl
[ e (x) $2. ax
X sl
h
X

Combining the results of Egs. (Al9) and (A20), we have

Asl > QS (A21)

Therefore, we can state that the first natural frequency
for a rotating string attached to a hub of radius hX is always
greater than the corresponding frequency for a string attached

to the axis of rotation. Using this result in inequality (A9),

we obtain
2 2 2

Avxl > Ar + Qs (A22)

which completes the proof.
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Appendix B

The computer program consists of a main program and four
subroutines. Listings for the main program and one of the
subroutines are provided. The three remaining subroutines
are IBM SSP subroutines ARRAY, EIGEN and NROOT. These sub-
routines are readily available.

The main program is capable of performing a stability
analysis based on criteria established for either the normal
mode analysis or the integral coordinate analysis. The pro-
gram solves the eigenvalue problem of Eq.(lO6)rand uses this,
along with various input parameters, to establish stability
bounds for either the normal modes or integral coordinates
method, depending on the input parameters. In the following
the input and output parameters are listed with accompanying

explanatory statements.
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Figure | — The Flexible Body in an Inertial Space
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Figure 2a — The Flexible Satellite
2b— The Satellite Rotational Motion
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